Experiences on
using GPU
accelerators for
data analysis In
ROOT/RooFit

openlab

Sverre Jarp, Alfio Lazzaro, Julien Leduc,

Yngve Sneen Lindal, Andrze] Nowak
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Workshop on Future Computing in Particle Physics, e-Science Institute,
Edinburgh (UK)
June 15%-17th 2011

\ »

CERN Tiny OpenCL intro

openlab

Qd OpenCL device abstractions

® Different hardware/SDKs/drivers are represented by
different «platform» objects

" A platform object can have a range of devices (of course,
If you have them physically)

d An example

cl_platform platform;
cl_device device;
cl_context context;
cl_command_queue queue;
cl_int status;

clGetPlatformIDs(1, &platform, NULL);

clGetDevicelDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);
context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
queue = clCreateCommandQueue(context, device, 0, &status);

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

\ »

CERN Tiny OpenCL intro

openlab

Q Declaring a computational kernel

__kernel void evaluatePdfGaussian(__const double mu, __const double sigma, __global const double *data,
__global double *results, __const int N)

{
int i = get_global_id(0);
if (i >= N) return;
double x = datali];
double temp = (x-mu)/sigma;
temp *= temp;
results[i] = exp(-0.5*temp);

}
Q Executing a computational kernel

//Assume we have the required arguments and a kernel object for the Gaussian kernel above
clSetKernelArg(evaluatePdfGaussian, 0, sizeof(float), (void*)&mu);
clSetKernelArg(evaluatePdfGaussian, 1, sizeof(float), (void*)&sigma);
clSetKernelArg(evaluatePdfGaussian, 2, sizeof(cl_mem), (void*)&data);
clSetKernelArg(evaluatePdfGaussian, 3, sizeof(cl_mem), (void*)&results);
clSetKernelArg(evaluatePdfGaussian, 4, sizeof(int), (void*)&N);

size_t workGroupSize = 128; //e.g.

size_t numWorkGroups = N % workGroupSize == 0 ? N/workGroupSize : N/workGroupSize + 1,

size_t total = workGroupSize * numWorkGroups;
clEnqueueNDRangeKernel(queue, evaluatePdfGaussian, 1, NULL, &total, &workGroupSize, 0, NULL, NULL);

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

\ »
..~ \ ' I.

L] ”
CERN

openlab

GPU Implementation (OpenCL)

d With OpenMP, each thread can evaluate the tree top-down directly in fully
parallel. Using a GPU requires an explicit call to a kernel inside each PDF
(see 2nd illustration), suggesting lower parallel efficiency.

NLL

+GetVal()

{
#pragma omp parallel

RooAddPdf

model.GetVal()
} +GetVal()

) {
: }

RooAddPdf
+GetVali() \\

{
evaluateOpenMP()
1

clEngueueNDRangeKernel(...)

RooGaussian RooArgusBG

+GetVall) +GetVall)
{ {

RooGaussian

+GetVal()

{
evaluateOpenMP()

IS

RooArgusBG

+GetVal()

{
evaluateOpenMP()

1

}

clEngueueNDRangeKernel(...)

clEngueueNDRangekKernel(...)

}

0 Leads to larger serial fraction, many kernel calls and in general, stalls
O Data is uploaded once, in the beginning of the run.

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

\ »

L GPU Implementation (OpenCL)

CERN

openlab

0 Parallel block-wise reduction is used. Improves the speedup significantly
(uses GPU shared mem)

0 Double precision and general accuracy requirements prevents using
native transcendental units and also limits performance in general (GPUs
are made for single-precision primarily)

0 Not memory-bound (on an Nvidia GTX470, at least) since we’re doing
expensive computations, so texture cache has no effect

0 Straight-forward implementation. No possibility to use e.g. shared
memory (except for reduction). But this is also beneficial from a user
perspective

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch) 5

\ »

— Downsides

openlab

Q Introduces more expressive code when setting up environment and e.g.
calling kernels.

O Duplication of code since we now use an OpenCL compiler in addition to
the C/C++ compiler

O May be necessary to explicitly program with vector types to exploit
performance on AMD cards (we have not tested this yet).

0 We have also tried OpenCL for CPUs. Our experiences:

" Have to use vector types to achieve vectorization. But even then AMDs
OpenCL compiler does not vectorize transcendentals for instance

" To obtain performant code, it is necessary to do more work per OpenCL
thread. Like doing work by hand instead of making a computer do it...

" Talked to Intel OpenCL guru today, he says that this is not the case with
Intels implementation

" |t would of course be nice to have one unified programming model for
any device, but that seems like somewhat of a silver bullet so far...

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

\»
n, !

CE'.;;. GPU Test environment

openlab

= PC (host)
= Desktop system
= CPU: Intel Nehalem @ 3.2GHz: 4 cores - 8 hardware threads
= Linux 64bit, Intel C++ compiler version 11.1

= GPU: ASUS nVidia GTX470 PCl-e 2.0
= Commodity card (for gamers)
= Architecture: GF100 (Fermi)
= Memory: 1280MB DDR5
= Core/Memory Clock: 607MHz/837MHz
= Maximum # of Threads per Block: 1024
= Number of SMs: 14
= Power Consumption 200W
= Price ~$300 (July 2010)

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch) 7

\
.\\".

S— Performance

openlab

a This is not a fair “CPU vs GPU” comparison because of different algorithm

3
uy
=]
(1]
@
= 25
o0
-
N
E 2
=
= P ®
o
S —_—
= penf—
= 15
[Fy]
LV e
(2]
-~
e e ———
5 1 O
L4]
-
S
a 05
=3
[«5]
Q
j= 1
L7]
O | | T T 1
10000 50000 100000 500000 1000000 4000000

#Hevents
=@=Core i7 965 fully optimized, 8 threads

== GTX470 w. OpenMP reduction

=@=GTX470 w. GPU reduction

== GTX470 w. GPU reduction and loop fusion

== GTX470 w. GPU reduction, loop fusion and const. expr.

=== GTX470 w. GPU reduction, loop fusion, const.expr. and occupancy optimized

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

\ »

S Conclusion

openlab

The two algorithms (OpenMP and OpenCL) can coexist seamlessly in the
application

Up to a factor 2.5x (on our tests) with respect to OpenMP with 8 SMT
threads (i7 965 and GTX470). The CPU scalability compared to one core is
~4.6X.

GPUs behaves better with more events, as expected

Seems ideal to load-balance, since equally priced products perform
comparable

It is clear that reduction must be done on the GPU to achieve high GPU
performance. This reduction is deterministic, which can be a requirement
from minimization algorithms

We have measured the GPU idle percentage to be around 12% in ideal
cases, which is not too bad, taking the algorithm into account

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

\ »

‘e
CERN

openlab

Note that our target is running at the user-level on the GPU of small
systems (laptops, desktops), i.e. with small number of CPU cores
and commodity GPU cards

Comparisons with a GPU Tesla card is more appropriate with a
CPU server system, which is not our goal

Main limitation is the algorithm and the double precision
Small limitation due to CPU<~GPU communication

Soon the code will be released in the standard RooFit (discussion
with the authors of the package ongoing)

Conclusion

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch) 10

\ »

CERT Current/future developments

openlab

* Try the code on LHC analyses
 Test vector types on AMD cards to see if they have any performance effect
 Concurrent execution on CPU with OpenMP and GPU with OpenCL

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch) 11

