
Experiences on
using GPU
accelerators for
data analysis in
ROOT/RooFit

Sverre Jarp, Alfio Lazzaro, Julien Leduc,

Yngve Sneen Lindal, Andrzej Nowak
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Workshop on Future Computing in Particle Physics, e-Science Institute,

Edinburgh (UK)

June 15th−17th, 2011

Tiny OpenCL intro

 OpenCL device abstractions

 Different hardware/SDKs/drivers are represented by

different «platform» objects

 A platform object can have a range of devices (of course,

if you have them physically)

 An example
 cl_platform platform;

 cl_device device;

 cl_context context;

 cl_command_queue queue;

 cl_int status;

 clGetPlatformIDs(1, &platform, NULL);

 clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

 context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);

 queue = clCreateCommandQueue(context, device, 0, &status);

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Tiny OpenCL intro

 Declaring a computational kernel
__kernel void evaluatePdfGaussian(__const double mu, __const double sigma, __global const double *data,

__global double *results, __const int N)

{

 int i = get_global_id(0);

 if (i >= N) return;

 double x = data[i];

 double temp = (x-mu)/sigma;

 temp *= temp;

 results[i] = exp(-0.5*temp);

}

 Executing a computational kernel
//Assume we have the required arguments and a kernel object for the Gaussian kernel above

clSetKernelArg(evaluatePdfGaussian, 0, sizeof(float), (void*)&mu);

clSetKernelArg(evaluatePdfGaussian, 1, sizeof(float), (void*)&sigma);

clSetKernelArg(evaluatePdfGaussian, 2, sizeof(cl_mem), (void*)&data);

clSetKernelArg(evaluatePdfGaussian, 3, sizeof(cl_mem), (void*)&results);

clSetKernelArg(evaluatePdfGaussian, 4, sizeof(int), (void*)&N);

size_t workGroupSize = 128; //e.g.

size_t numWorkGroups = N % workGroupSize == 0 ? N/workGroupSize : N/workGroupSize + 1;

size_t total = workGroupSize * numWorkGroups;

clEnqueueNDRangeKernel(queue, evaluatePdfGaussian, 1, NULL, &total, &workGroupSize, 0, NULL, NULL);

 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

GPU Implementation (OpenCL)

 With OpenMP, each thread can evaluate the tree top-down directly in fully

parallel. Using a GPU requires an explicit call to a kernel inside each PDF

(see 2nd illustration), suggesting lower parallel efficiency.

 Leads to larger serial fraction, many kernel calls and in general, stalls

 Data is uploaded once, in the beginning of the run.

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

GPU Implementation (OpenCL)

 Parallel block-wise reduction is used. Improves the speedup significantly

(uses GPU shared mem)

 Double precision and general accuracy requirements prevents using

native transcendental units and also limits performance in general (GPUs

are made for single-precision primarily)

 Not memory-bound (on an Nvidia GTX470, at least) since we’re doing

expensive computations, so texture cache has no effect

 Straight-forward implementation. No possibility to use e.g. shared

memory (except for reduction). But this is also beneficial from a user

perspective

5 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Downsides

 Introduces more expressive code when setting up environment and e.g.

calling kernels.

 Duplication of code since we now use an OpenCL compiler in addition to

the C/C++ compiler

 May be necessary to explicitly program with vector types to exploit

performance on AMD cards (we have not tested this yet).

 We have also tried OpenCL for CPUs. Our experiences:

 Have to use vector types to achieve vectorization. But even then AMDs

OpenCL compiler does not vectorize transcendentals for instance

 To obtain performant code, it is necessary to do more work per OpenCL

thread. Like doing work by hand instead of making a computer do it…

 Talked to Intel OpenCL guru today, he says that this is not the case with

Intels implementation

 It would of course be nice to have one unified programming model for

any device, but that seems like somewhat of a silver bullet so far…

 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

GPU Test environment

 PC (host)
 Desktop system

 CPU: Intel Nehalem @ 3.2GHz: 4 cores – 8 hardware threads

 Linux 64bit, Intel C++ compiler version 11.1

 GPU: ASUS nVidia GTX470 PCI-e 2.0
 Commodity card (for gamers)

 Architecture: GF100 (Fermi)

 Memory: 1280MB DDR5

 Core/Memory Clock: 607MHz/837MHz

 Maximum # of Threads per Block: 1024

 Number of SMs: 14

 Power Consumption 200W

 Price ~$300 (July 2010)

7 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Performance

 This is not a fair “CPU vs GPU” comparison because of different algorithm

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Conclusion

• The two algorithms (OpenMP and OpenCL) can coexist seamlessly in the

application

• Up to a factor 2.5x (on our tests) with respect to OpenMP with 8 SMT

threads (i7 965 and GTX470). The CPU scalability compared to one core is

~4.6x.

• GPUs behaves better with more events, as expected

• Seems ideal to load-balance, since equally priced products perform

comparable

• It is clear that reduction must be done on the GPU to achieve high GPU

performance. This reduction is deterministic, which can be a requirement

from minimization algorithms

• We have measured the GPU idle percentage to be around 12% in ideal

cases, which is not too bad, taking the algorithm into account

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Conclusion

• Note that our target is running at the user-level on the GPU of small

systems (laptops, desktops), i.e. with small number of CPU cores

and commodity GPU cards

• Comparisons with a GPU Tesla card is more appropriate with a

CPU server system, which is not our goal

• Main limitation is the algorithm and the double precision

• Small limitation due to CPUGPU communication

• Soon the code will be released in the standard RooFit (discussion

with the authors of the package ongoing)

10 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Current/future developments

• Try the code on LHC analyses

• Test vector types on AMD cards to see if they have any performance effect

• Concurrent execution on CPU with OpenMP and GPU with OpenCL

11 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

