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Qd OpenCL device abstractions

® Different hardware/SDKs/drivers are represented by
different «platform» objects

" A platform object can have a range of devices (of course,
If you have them physically)

d An example

cl_platform platform;
cl_device device;
cl_context context;
cl_command_queue queue;
cl_int status;

clGetPlatformIDs(1, &platform, NULL);

clGetDevicelDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);
context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
queue = clCreateCommandQueue(context, device, 0, &status);
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Q Declaring a computational kernel

__kernel void evaluatePdfGaussian(__const double mu, __const double sigma, __global const double *data,
__global double *results, __const int N)

{
int i = get_global_id(0);
if (i >= N) return;
double x = datali];
double temp = (x-mu)/sigma;
temp *= temp;
results[i] = exp(-0.5*temp);

}
Q Executing a computational kernel

//Assume we have the required arguments and a kernel object for the Gaussian kernel above
clSetKernelArg(evaluatePdfGaussian, 0, sizeof(float), (void*)&mu);
clSetKernelArg(evaluatePdfGaussian, 1, sizeof(float), (void*)&sigma);
clSetKernelArg(evaluatePdfGaussian, 2, sizeof(cl_mem), (void*)&data);
clSetKernelArg(evaluatePdfGaussian, 3, sizeof(cl_mem), (void*)&results);
clSetKernelArg(evaluatePdfGaussian, 4, sizeof(int), (void*)&N);

size_t workGroupSize = 128; //e.g.

size_t numWorkGroups = N % workGroupSize == 0 ? N/workGroupSize : N/workGroupSize + 1,

size_t total = workGroupSize * numWorkGroups;
clEnqueueNDRangeKernel(queue, evaluatePdfGaussian, 1, NULL, &total, &workGroupSize, 0, NULL, NULL);
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GPU Implementation (OpenCL)

d With OpenMP, each thread can evaluate the tree top-down directly in fully
parallel. Using a GPU requires an explicit call to a kernel inside each PDF
(see 2nd illustration), suggesting lower parallel efficiency.
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0 Leads to larger serial fraction, many kernel calls and in general, stalls
O Data is uploaded once, in the beginning of the run.
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0 Parallel block-wise reduction is used. Improves the speedup significantly
(uses GPU shared mem)

0 Double precision and general accuracy requirements prevents using
native transcendental units and also limits performance in general (GPUs
are made for single-precision primarily)

0 Not memory-bound (on an Nvidia GTX470, at least) since we’re doing
expensive computations, so texture cache has no effect

0 Straight-forward implementation. No possibility to use e.g. shared
memory (except for reduction). But this is also beneficial from a user
perspective
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Q Introduces more expressive code when setting up environment and e.g.
calling kernels.

O Duplication of code since we now use an OpenCL compiler in addition to
the C/C++ compiler

O May be necessary to explicitly program with vector types to exploit
performance on AMD cards (we have not tested this yet).

0 We have also tried OpenCL for CPUs. Our experiences:

" Have to use vector types to achieve vectorization. But even then AMDs
OpenCL compiler does not vectorize transcendentals for instance

" To obtain performant code, it is necessary to do more work per OpenCL
thread. Like doing work by hand instead of making a computer do it...

" Talked to Intel OpenCL guru today, he says that this is not the case with
Intels implementation

" |t would of course be nice to have one unified programming model for
any device, but that seems like somewhat of a silver bullet so far...
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= PC (host)
=  Desktop system
= CPU: Intel Nehalem @ 3.2GHz: 4 cores - 8 hardware threads
= Linux 64bit, Intel C++ compiler version 11.1

= GPU: ASUS nVidia GTX470 PCl-e 2.0
= Commodity card (for gamers)
= Architecture: GF100 (Fermi)
= Memory: 1280MB DDR5
= Core/Memory Clock: 607MHz/837MHz
= Maximum # of Threads per Block: 1024
= Number of SMs: 14
= Power Consumption 200W
= Price ~$300 (July 2010)
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a This is not a fair “CPU vs GPU” comparison because of different algorithm
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The two algorithms (OpenMP and OpenCL) can coexist seamlessly in the
application

Up to a factor 2.5x (on our tests) with respect to OpenMP with 8 SMT
threads (i7 965 and GTX470). The CPU scalability compared to one core is
~4.6X.

GPUs behaves better with more events, as expected

Seems ideal to load-balance, since equally priced products perform
comparable

It is clear that reduction must be done on the GPU to achieve high GPU
performance. This reduction is deterministic, which can be a requirement
from minimization algorithms

We have measured the GPU idle percentage to be around 12% in ideal
cases, which is not too bad, taking the algorithm into account
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Note that our target is running at the user-level on the GPU of small
systems (laptops, desktops), i.e. with small number of CPU cores
and commodity GPU cards

Comparisons with a GPU Tesla card is more appropriate with a
CPU server system, which is not our goal

Main limitation is the algorithm and the double precision
Small limitation due to CPU<~GPU communication

Soon the code will be released in the standard RooFit (discussion
with the authors of the package ongoing)

Conclusion
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* Try the code on LHC analyses
 Test vector types on AMD cards to see if they have any performance effect
 Concurrent execution on CPU with OpenMP and GPU with OpenCL
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